
1

IX. ORDER BATCHING WITH TIME CONSTRAINTS IN A
PARALLEL-AISLE WAREHOUSE:
A MULTIPLE-POLICY APPROACH

Soondo Hong

Department of Industrial Engineering, Pusan National University,
Pusan, 609-735, Korea

Andrew L. Johnson

Department of Industrial and Systems Engineering
Texas A&M University

College Station, TX 77843, USA

Brett A. Peters

Department of Industrial and Manufacturing Engineering
University of Wisconsin - Milwaukee

Milwaukee, WI 53201, USA

Abstract

A commitment of delivery time is critical in some online businesses
(De Koster, 2003). An important challenge to meeting customers’ needs is
timely order picking which is also relevant to worker safety, item
freshness, overall operational synchronization, and reduced overtime. We
analyze an order batch picking situation where a trip is constrained by
vehicle capacity and must be completed within a specified time. We
develop a model which partitions orders to batches to minimize the total
travel time such that each trip meets the orders’ time constraints and
capacity limit, and also determines a suitable operational policy for each
batch. Each policy is characterized by routing method, travel speed,
capacity, and pick time. The proposed batching model can simultaneously
group orders and can select a best policy among possible policy choices

2

for each batch. To solve the proposed batching procedure, an exact
algorithm is implemented based on a branch-and-price method. Our
multiple-policy approach experiences 2.1~7.0% reductions in retrieval
time compared to a best single-policy approach. The experimental results
emphasize that when time constraints are enforced in order batching, a
multiple-policy is preferable to a single-policy approach, because allows
additional flexibility.

1 Introduction

Today, warehouses play a critical role in supply chains (Tompkins et al. 2003).
Warehouse operations are becoming more diverse; however, order picking is the most
labor-intensive, and consumes a significant portion of operational costs (Frazelle 2002).
Batch picking, where order pickers consolidate multiple orders in a single trip, improves
picking throughput by reducing the number of trips. Typically, the batch size is
determined to utilize the full capacity of a picking vehicle, which maximizes throughout.

We are interested in situations where orders have due dates they must be picked by.
In this setting picking vehicles may not be fully loaded if the entire batch cannot be
collected within the specified time limits. Two examples in the literature are an online
order fulfillment situation that must meet customer promise dates (De Koster (2003) and
the large online retailers that guarantee a fast delivery schedule to obtain a competitive
marketing advantage (Gong and De Koster 2008). An example of the latter is
Amazon.com, who gives its customers a shipping lead time guarantee, based on the
option, “Amazon Prime”, whereby membership guarantees two-day shipping at no
additional fee (Pace 2009).

Food retailers, such as Peapod and Webvan, depend on specialized frozen and
refrigerated warehousing (Maloney 2007), and the order picking time may be limited by
safety regulations controlling the operational hours spent by order pickers in refrigerated
climates (Platoni 2001). Time restricted order picking may also be when managerial rules
force retrieval cycles to synchronize with the next operation.

Even though these time-critical operational issues and marketing strategies strongly
rely on the stability and performance of the warehouse operations, the most expansive
warehouse operation, order picking, has been not well studied from the perspective of the
time constraint and its performance. In a preliminary study we grouped orders using
traditional approaches (De Koster et al. 1999, Gademann and Van de Velde 2005), and
found that a time-constraint batching approach suffered from a significant loss of
productivity due to the increased number of trips.

Fundamentally, a traditional approach tends to assume a unique capacity, a unique
travel speed, and a unique route method, where the latter represents a mechanism to
organize a trip for a batch. Under these restrictions and two constraints (i.e., time and
capacity), it is difficult to find batches that both utilize capacity and meet the time

3

constraints. Thus, typically the addition of a time constraint leads to small and more
batches, requiring additional labor and higher operational costs.

We present an efficient and robust batching method to solve the time-constrained-
order batching problem. In practice, warehouse managers face multiple operational policy
decisions, where a policy is characterized by routing method, travel speed, pick time per
item, and capacity. Note these parameters do not change independently that for example
the routing method will affect the travel speed. Typically a manager selects S-shape
routes for pickers’ convenience. Our study allows such multiple operational policies,
which we term “multiple-policy”.

The purpose of our study is to: 1) define a multiple-policy order batching problem
with capacity and time constraints and develop an appropriate model; and 2) based on the
formulation, provide an adapted exact branch-and-price solution. The proposed order
batching with time constraints (OBT) problem incorporates the policy selection problem
with the order batching problem.

The remainder of the paper is organized as follows. Section 2 reviews order batching
models and algorithms. Section 3 defines the order batching situation. We describe the
characteristics of an operational policy, how to approximate retrieval times, and a
succinct formulation. Section 4 presents a construction-based order batching algorithm
and a branch-and-price solution. Section 5 summarizes the experimental results under the
assumption of multiple-policy order picking. We conclude with our insights and
suggestions for future research in Section 6.

2 Literature Review

This study is interested in an order batching problem in parallel-aisle warehouses. An
order batching model is a special case of the vehicle routing problem (VRP) (Gu et al.
2007). Thus, several models and solutions are available based on VRP formulation. First,
we summarize a route method, a significant consideration in order batching, since it
determines route length. Second, we review available batching algorithms. Last, we
summarize some issues relevant to the time-constrained order batching.

2.1 Routing Methods

The routing method tool used by pickers to construct a trip path over a given batch or
order consists of an optimal algorithm and heuristic algorithms. Optimal routing of order
pickers is a special case of the travelling salesman problem (Ratliff and Rosenthal 1983).
Ratliff and Rosenthal (1983) present a polynomial timed dynamic model to solve the
order picking problem in a parallel- aisle warehouse. However, due to route complexity,
heuristics routing is often preferred for practical purposes; Hall (1993) concludes that S-
shape and Largest gap strategies are reasonable.

4

2.2 Order Batching Algorithms

The extensive literature on batching algorithms for parallel-aisle picking systems can be
categorized as: 1) optimal approach; 2) meta-heuristic; 3) seed heuristic; and 4) saving
heuristic. An optimal approach for order batching is to solve the batching and routing
problem exactly through a mixed integer programming model (Gademann and Van de
Velde 2005). The authors extend Gademann et al. (2001) by developing a branch-and-
price formulation for the sort-while-pick order picking strategy. They evaluate a trip
length using an optimal routing method, and point out that the optimal route is
impractical due to route complexity.

De Koster et al. (1999) conduct a comparison study of seed and saving algorithms
and conclude that the best seed algorithms combine three control factors: select the seed
order as the order that must visit the largest number of aisles; choose the next order to
minimize the number of additional aisles; and cumulatively update the seed information
based on orders in the seed. Alternatively, in the same paper the savings algorithm (the
modified Clarke and Wright method) is developed in which a savings list is updated until
no savings pair remains. They conclude that the savings algorithm is preferable to the
seed algorithm.

Hsu et al. (2005) propose a meta-heuristic approach, a genetic order batching
algorithm, to minimize the total travel distance. The picking distance is calculated
through S-shape strategy. Each route is constrained by the capacity of the order picking
vehicle.

2.3 Issues

In reviewing the extant literature, we find that only distance has been considered as a
measure of a solution quality. The distance-based approach itself can be extended to a
time-based batching model. If the order picker travels at a constant speed and the
retrieval time is constant regardless of batching, then a distance-based objective gives the
same solution as a time-based objective. However, if the time-based batching formulation
is further constrained to enforce each order is retrieved within in a limited time, the
required travel distance will increase.

3 Order Batching Model with Time-Constraints

This section presents an order picking situation where a time constraint is enforced and
multiple-policy is allowed.

3.1 Problem Definition

We consider a parallel-aisle warehouse where pickers ready at the loading/unload station
and circumnavigate parallel aisles to retrieve items. At a pick location, pickers place the

5

items needed in one vehicle and travel to the next pick location. This is repeated until
their pick lists are complete, and then return to the station. The order size is relatively
small compared to the cart capacity; thus, batch picking is adopted to improve order
picking throughput by combining many orders in one trip. A set of orders is available at
a given time, and pickers must complete each trip within the time length specified. We
assume that the number of pickers at a loading station is greater than the number of
batches read for picking at any point in time. The pickers who do not participate in
picking operation can be assigned to other operations such as sorting or packing. We
assume the aisle width is designed to be wide enough that congestion is not a concern.

An operational policy specifies a routing method and a batch size. This study
considers three routing methods: optimal routing method, S-shape routing method, and
traversal routing method. Note a traversal routing method is distinguished from an S-
shape routing method in that traversal routing does not allow a U-turn in an aisle.
Dependent on routing methods, travel speed can vary. For example, optimal routing can
decrease a travel speed because a picker requires additional care to follow the specified
route. Batch size can vary with different pick time. If a picker is more careful loading the
picking vehicle additional capacity can be obtained.

Figure 1: A narrow-aisle system and a routing example (Gademann and Van de Velde

2005).

3.2 Estimating Retrieval Time

Previously, Tompkins et al. (2003) described the time components of order picking
operations, and Gademann and Van de Velde (2005) described the time components of
batch picking. We integrate their work and calculate the retrieval time for operation
policy v having four components: operation policy, route, item, and distance, according to
dependency:

• Policy setup time (OTv, operation policy set time): e.g. training time
• Route setup/finishing time (RTv, loading/loading time per trip): e.g. pick list pick-

up time, unload time(one-time unload)
• Pick dependent time (PTv, pick time per time): e.g. pick time, search time,

6

acceleration/deceleration time, unloading time (item by item)
• Travel distance dependent time (WTv, walk time per pick face): e.g. travel

distance, acceleration/deceleration time (# of travel aisles)

We assume that the components are deterministic and linearly dependent on
operation policy, the number of routes, the number of picked items, and travel length.
Next, we develop a linear equation to estimate the retrieval time for policy v:

3.3 Mathematical Model

We formulate a batching model as a set partitioning problem to account for the potential
of multiple-policies. Initially, we assume that Sv possible batches are available for each
policy v. For batch s using policy v, the retrieval time is dvs. Batch s of policy v contains
multiple orders, which we express with an incidence vector (aovs). Some operation policy
may require an initial setup cost (OTv). This time does not impact the retrieval time of a
batch, but it does increase the overall retrieval time of orders. For example, if a policy
uses a different picking vehicle, time must be allotted for the picker to set up the vehicle.

Indices and Parameters
V = the set of all possible policies

v = index regarding policies

Sv = the set of all possible batches in policy v

s = index regarding batches

O = the set of all possible orders

o = index regarding batches

OTv

= the setup time for policy v

aovs

= the incidence column vector for batch s containing order o of policy v

dvs

= the retrieval time to pick all items of orders in batch s via policy v

The retrieval time relevant to policy v =
OTv
+ (RTv + PTv * the number of picked items + WTv * the number of pick faces) // route 1
+ (RTv + PTv * the number of picked items + WTv * the number of pick faces) // route 2
…
+ (RTv + PTv * the number of picked items + WTv * the number of pick faces) // route n

7

Decision Variables

vZ =

⎩
⎨
⎧

otherwise 0
selected is policy if 1 v

svY =

⎩
⎨
⎧

otherwise 0
selected is policy of batch if 1 vs

Formulation

(OBT) Min ∑∑∑

∈∈ ∈

+
Vv

vv
Vv Ss

vsvs ZOT Yd
v

 (1)

s.t ,vsv YZ ≥ V, v,S s v ∈∀∈∀ (2)

 ,1=∑∑
∈ ∈Vv Ss

vsovs
v

 Ya O, o∈∀ (3)

 { },1,0∈vZ V, v∈∀ (4)

 { },1,0∈vsY V, v,S s v ∈∀∈∀ (5)

The objective function (1) minimizes the total travel time. Constraints (2) ensures
if a policy v is used for a batch s, then the indicator variable, zv, is set to one to indicate
the setup for that policy is required. Constraints (3) ensure that each order is picked
exactly one time. Constraints (4) and (5) require that the decision variables take binary
values.
The OBT is a form of the Location-Routing problem (LRP) with multi- constraints (see
Berger et al. (2007)). Although LRP selects facility locations and organizes their delivery
routes, OBT selects operation policies and develops batches.

4 Branch-and-Price Algorithm

We apply a branch-and-price algorithm to optimally solve the OBT formulation. The
branch-and-price algorithm is a well-known exact method to solve VRP problems (Toth
and Vigo 2002, Berger et al. 2007). We build a construction algorithm, a master problem
solution, sub problem solution, and branching strategies. The prior work by Gademann
and Van de Velde (2005) and Berger et al. (2007) cannot be applied directly to our
formulation. Gademann and Van de Velde do not consider multiple policies. The
multiple-policy approach impacts the master problem algorithm and the branch-and-
pricing strategy. In addition, our sub problem considers both sort-while-pick and pick-
then-sort strategies, where the item-based quantity constraint of the pick-then-sort
strategy requires a new algorithm for the sub problem. Although our formulation shares a

8

similar structure to the location-routing approach (Berger et al. 2007), the sub-problems
in our formulation has a unique structure which has not appeared in the VRP literature.

4.1 Construction Algorithm

Generating an initial feasible solution is critical to the performance of a branch-and-price
algorithm. The initial feasible solution defines the first upper bound, which if tight,
decreases unnecessary exploration of the branch and bound tree. Typically heuristic
algorithms are used to build initial solutions.

We propose a modified Clarke and Wright algorithm (CW) (Clarke and Wright
(1964), De Koster et al. (1999)). Our CW algorithms is an adaptation of CW(i) and
includes logic to deal with both policy selection and batching as follows:

We also develop a similar extension for CW(ii).

CW1: extension of CW(i) by De Koster et al. (1999)
Step 1: calculate the saves svij for all possible order pairs i,j, given the

capacity and time limit of the policy v
Step 2: sort the savings in decreasing sequence
Step 3: select the pair with the highest savings. In the case of a tie, select a

random pair
Step 4. Three cases can happen:

• Neither of the orders has been included in an existing route and the
remaining capacity of the vehicle is sufficient for both orders:
include both orders in a new route.

• Exactly one order has been included in an existing route of a policy.
If the other order fits in this route, add it to the route; if not, proceed
with step 5

• Both orders have been included in an existing route: proceed with
step 5

Step 5: select the next order combination from the list and repeat step 4
until all orders have been included in a route

9

4.2 Master Problem

The master problem optimally assigns of orders to batches. This can be formulated as a
set partition problem.

(MP) Min ∑∑∑
∈∈ ∈

+
Vv

vv
Vv Ss

vsvs ZOT Yd
v

s.t ,0≥−∑
∈ vSs

vsovsv YaZ O oV, v ∈∀∈∀ (6)

 ,1≥∑∑
∈ ∈Vv Ss

vsovs
v

 Ya O o∈∀ (7)

 ,10 ≤≤ vZ V, v∈∀ (8)

 ,10 ≤≤ vsY V, v,S s v ∈∀∈∀ (9)

The OPT formulation is a set partition problem with location constraints, thus an Integer
Program (IP). To solve the OPT problem, a linear programming relaxation of the problem
is used. Equations (8) and (9) define vZ and vsY as continuous variables. Further,
constraint (3) relaxes equation (7) from requiring strict equality to a greater than or equal
condition. This problem is a set covering problem. The LP relaxation provides solution
that is far from feasible in the OBT formulation. Thus, we modify the constraints (6) is a
rank-1 Chvatal cuts (Berger et al. 2007) developed from equations (2).

4.3 Sub Problem

There are two kinds of dual variables from the master problem associated with
constraints (6) and (7): for orders o , oπ , and for policies v, ovµ . For each sub problem,
new columns are generated if the dual variables from the master problem indicated a

CW2: extension of CW(ii) by De Koster et al. (1999)
Step 1: calculate the saves svij for all possible order pairs i,j, given the

capacity and time limit of policy v
Step 2: sort the savings in decreasing sequence
Step 3: select the pair with the highest savings; in the case of a tie, select a

random pair
Step 4. merge the two orders i.e., ‘clusters’ into a new cluster, if it is

feasible for the capacity and the time; if not, choose the next
combination on the list

Step 5: if all order combinations have not been included in a route, proceed
with step 1; in the calculation, all clusters are considered as orders;
otherwise: go to end

10

negative reduced cost. The dual variables update the reduced cost of a batch s associated
with policy v. We define the reduced cost as:

()∑
∈

−−=
Oo

ovoovsvsvs add µπ, (10)

Indices and Parameters
vQ = the maximum capacity for one route when policy v is used

vT = the maximum time length for one route when policy v is used

R = the set of all possible routes

ijvc = the travel cost from item i to item j by policy v

vRT = the route setup time for policy v

vPT = the unit picking time of policy v

vWT = the travel speed of policy v

oq = the number of items in order o

Decision Variables

ijx =

⎩
⎨
⎧

otherwise 0
 to item from arcan has route a if 1 ji

oy =

⎩
⎨
⎧

otherwise 0
oorder contains route a if 1

The reduced cost is reflected in the objective function of the sub problem. The
three factors appearing in the objective function are: 1) setup time, 2) picking dependent
time, and 3) travel distance dependent time. Without considering dual variables, the
objective function can be expressed as:

∑∑∑
∈ ∈∈

++
Ni Nj

ijijvv
Oo

oovv xcWTyqPTRT
(11)

Based on the dual variables, we derive an updated objective function. As described

above, the dual variables are indexed as orders and picking modes. For simplicity, we
derive the objective function as a value dependent on order quantity:

()

()() ∑∑∑

∑∑∑∑

∈ ∈∈

∈∈ ∈∈

+−−+=

−−++

Ni Nj
ijijvv

Oo
oovoovsovv

Oo
oovoovs

Ni Nj
ijijvv

Oo
oovv

xcWTyaqPTRT

yaxcWTyqPTRT

µπ

µπ

(12)

Thus, the sub problem of policy v generates a batch (or batches) to minimize the

equation (13).

11

(SP) Min ()() ∑∑∑

∈ ∈∈

+−−+
Ni Nj

ijijvv
Oo

oovoovsovv xcWTyaqPTRT µπ (13)

We modify the branch-and-bound approach in Gademann et al. (2005) and adapt

an active node search. Each level matches an order. The level contains two branches:
including the current level and excluding the current node. To improve search
performance, we consider only negative weighted orders. We sort the result in a
decreasing order. Because we know the remaining capacities and all worst possible
negative weight, we can forecast the most negative value at a node. Based on the current
nth objective value, if the minimal forecast objective value is greater than nth objective
value, we do not need to continue the branch step. We use the following lower bound
forecasting logic:

1) Define the remain capacities for time and quantity
2) Find (new dual-picking times)/order quantity for all orders
3) Sort the values in increasing order
4) Compute minimal (maximal possible quantity)

a. When the remaining quantity is less than the candidate order
quantity, consider the possible portion.

4.4 Branching Rules

Our problem contains two branching stages: 1) we determine which policies are
acceptable for the optimal solution, and 2) we fix the order pairs for each policy. For the
strategies decision we follow Berger et al. (2007). To branch on an order pair, we adopt
Gademann et al. (2005).

To branching on a policy we consider fractional values for Zp and we apply the 0-1
branching. When Zp > 0.001, we set Zp to 1. For Zp ≤ 0.001, we set Zp to 0 and set all
routes Yop regarding Zp to 0.

For Yop, we design two branching strategies: 1) we apply the most common
approach by Gademann et al. (2005) to consider the branch on the most fractional node
and correct the more factional pair into an integer value, 0 or 1; and 2) we also consider
the branch on the smallest order size, because a smaller order has a larger number of
batch combinations than a larger order.

4.5 Overall Iteration

The branch-and-price procedure requires a step-by-step approach. First, we run the
construction algorithm to obtain an upper bound (UP). Second, we execute a column
generation step. Then, we get a lower bound (LP). If |UP-LP|= 0, we stop. The current

12

solution becomes an optimal solution. If not, we conduct a branch-and-price step utilizing
branching rules and column generation steps.

5 Experimental Results

We report the computational results and discuss insights from the computational studies.
We first test the computational performance of the proposed heuristic and branch-and-
price algorithms with two policies. Our experiment then focuses on a picking situation
where four extreme policies are prepared. Last, we discuss a situation where a limited
number of policies are possible.

We implement the proposed system using the C language. The master problem is
implemented using the ILOG CPLEX Callable Library C API 11.0.4. To test the
computational performance, the executable files are run on a Window NT-based server
system with Windows Vista (Xeon 2.66 Ghz CPU, 12 GB memory). We use a modified
order picking profile as in Gademann et al. (2005) and Le-Duc (2005).

5.1 Computational Performance

We use the following profiles:

• Warehouse layout: 6 aisles (height=30, width=5)
• Operation policy 1. OT1=0, RT1=0, PT1=8, WT1=1, Q1= 8 or 15
• Operation policy 2. OT2=0, RT2=0, PT2=4, WT2=1, Q2= 6 or 12
• Time constraint: 350 or 400
• Storage strategy: random or class (within-aisle class based strategy, 2 aisles:4

aisles= 70:30)
• Routing: optimal method
• The proportion of orders (o) to items (i): 20:24, 20:36, 15:60, and 20:72

The test sets are generated randomly. For each order set, we generate 10 problem

runs per each instance:

• ub: objective value by a construction algorithm
• opt: objective value by a branch-and-price algorithm
• diff %: (ub-opt)/ub*100
• note: the number of branched nodes
• cpu: run time in seconds

Construction Algorithm

Table 1 compares construction algorithms in terms of the quality of the objective
value. CW2 dominates CW1 and first-come first-served (FCFS) batching algorithms. The

13

CW2 algorithm accounts for the cost savings at each iteration, therefore the candidates at
the top of the list are more likely to improve the solution. The computational time is
negligible because of the problem size.

Table 1: Computational results of conduction algorithms.
(Q1,Q2)

Instances Construction algorithms (ub)

CW2 CW1 FCFS
(8,6) 20:24 class storage 538.8 660.4 940.0
 20:24 random storage 595.4 742.6 1229.6
 20:36 class storage 1660.0 1749.8 2483.8
 20:36 random storage 1957.0 2095.8 3167.0
 15:60 class storage 2305.8 2309.8 2810.2
 15:60 random storage 2950.6 2976.0 3613.2
 20:72 class storage 2305.8 2309.8 2810.2
 20:72 random storage 2950.6 2976.0 3613.2
(15,12) 20:24 class storage 541.8 749.2 1031.2
 20:24 random storage 607.6 729.0 1179.6
 20:36 class storage 919.8 1050.2 1553.8
 20:36 random storage 993.0 1242.0 1892.0
 15:60 class storage 1650.8 1720.6 2148.8
 15:60 random storage 1939.2 2013.2 2760.0
 20:72 class storage 1951.2 2038.0 2822.8
 20:72 random storage 2217.2 2323.6 3582.2

Branch-and-Price Algorithm

Table 2 summarizes the computational results by the branch-and-price algorithm.
We compare two branching rules: 1) a most fractional node first rule (Fraction first), and
2) a smallest order size node first rule (Smallest order). Commonly, the branch-and-price
algorithm for the location-routing problem works well branching on the most fractional
node (Berger et al. 2007), whereas our results exhibit different patterns. When the order
size is small, branching on the most fractional node performs well. However, when the
order size is large and the items are stored randomly, branch on the smallest order works
better. Pairs with small order sizes have a better chance to lead to cost efficient batches.

14

Table 2: Computational results of the branch-and-price algorithm.

(Q1,Q2)

 Instances

B&P rules
Objective values Fraction first Smallest order

ub opt diff % nodes cpu nodes cpu (8,6) 20:24 class storage 538.8 492.0 9.51 262.1 53.7 565.4 78.9 20:24 random storage 595.4 554.6 7.36 173.9 35.2 400.2 70.1 20:36 class storage 1660.0 1560.0 6.41 4347.3 717.6 5445.1 655.2 20:36 random storage 1957.0 1898.6 3.08 2337.2 367.1 2828.6 472.1 15:60 class storage 2305.8 2228.4 3.47 48.0 7.5 57.8 7.3 15:60 random storage 2950.6 2871.4 2.76 151.6 21.0 61.0 10.1 20:72 class storage 2305.8 2228.4 3.47 48.0 7.5 57.8 7.3 20:72 random storage 2950.6 2871.4 2.76 151.6 21.0 61.0 10.1 (15,12) 20:24 class storage 541.8 522.0 3.8 264.5 59.4 494.1 102.5 20:24 random storage 607.6 563.0 7.9 99.5 33.5 376.6 68.6 20:36 class storage 919.8 818.0 12.4 733.4 153.1 2484.7 438.3

20:36 random storage 993.0 922.8 7.6 4291.6 765.0 2402.9 411.2 15:60 class storage 1650.8 1537.2 7.4 905.4 204.4 1439.9 330.1

15:60 random storage 1939.2 1835.6 5.6 223.8 38.2 330.6 52.2 20:72 class storage 1951.2 1812.8 7.6 19127.0 3755.5 31925.4 5899.5 20:72 random storage 2217.2 2052.8 8.0 9953.3 2764.2 8095.8 1748.2

5.2 Single-Policy Versus Multiple-Policy

An order picker can take different route methods according to the batch. On the
operational level, we can design a multiple-policy operation situation. We provide the
following rationales:

1) If an order picker takes more time, he/she can load more items
2) When a simpler routing method is employed under the same routing length, a

travel time can be shortened
3) Even though an optimal routing method is inconvenient, sometimes the reduction

in distance outweighs the additional cognitive processing time.

We repeat the previous experiment with the same order picking profile. First, we
consider various storage methods: random, within-aisle class, and across aisle class.
Second, we define four operation modes summarized in Table 3. The four policies are
named normal policy, heavy-load policy, fast-pick policy, and a short-path policy.

Table 1: Possible operation policies (V).
Type PTv WTv Qv Routing method

Normal (A) 10 2.7 10 S-shape
Heavy load (B) 10 3.3 15 S-shape
Fast (C) 10 2.25 10 Traversal
Short (D) 10 3 10 Optimal

• Storage strategy: random, within-aisle class based strategy (The products in the

15

first 2 aisle account for 70% of the demand whereas the remaining 4 aisles contain

product making up only 30% of the demand), and across-aisle class-based

strategy (The products in the 10 pickfaces closest to the bottom cross aisle in each

aisle account for 70% of the demand whereas the remaining 20 pick faces contain

product making up only 30% of the demand)

• diff %: (obj of a single policy –opj by multiple-policy)/obj of a single policy *100

Table 4 summarizes the results. Our approach generates 2.1~7.0% total retrieval time
reduction according to the time length compared to the shortest single-policy.

Table 2: Comparison of single-policy and multiple-policy with the branch-and-price
algorithm.

Order
type

Storage
policy Tv

Single policy OBT (OPT)

Diff (%)

A B C D Obj A B C D Min
12:29

Random 920 1553 1508 1415 1492 1373 11.6 8.9 3.0 8.0 3.0
800 1553 1627 1415 1492 1373 11.6 15.6 3.0 8.0 3.0
700 1555 1743 1415 1492 1373 11.7 21.2 3.0 8.0 3.0

Within-
Aisle

920 1405 1380 1278 1346 1242 11.6 10.0 2.8 7.7 2.8
800 1405 1424 1278 1346 1242 11.6 12.8 2.8 7.7 2.8
700 1405 1472 1278 1346 1242 11.6 15.6 2.8 7.7 2.8

Across-
Aisle

920 1509 1463 1415 1386 1321 12.5 9.7 6.7 4.7 4.7
800 1509 1532 1415 1386 1321 12.5 13.8 6.7 4.7 4.7
700 1509 1676 1415 1386 1321 12.5 21.2 6.7 4.7 4.7

15:60

Random

920 3515 3092 3152 3242 2927 16.7 5.3 7.1 9.7 5.3
800 3515 3370 3152 3242 2949 16.1 12.5 6.4 9.1 6.4
700 3580 3403 3152 3243 2991 16.5 12.1 5.1 7.8 5.1

Within-
Aisle

920 3102 2716 2756 2923 2616 15.7 3.7 5.1 10.5 3.7
800 3102 2866 2756 2923 2617 15.6 8.7 5.0 10.5 5.0
700 3103 2923 2756 2923 2635 15.1 9.9 4.4 9.9 4.4

Across-
Aisle

920 3425 3013 3152 3009 2838 17.2 5.8 10.0 5.7 5.7
800 3425 3237 3152 3009 2844 17.0 12.2 9.8 5.5 5.5
700 3434 3733 3152 3009 2896 15.7 22.4 8.1 3.8 3.8

15:90

Random

920 5787 4993 5281 5310 4744 18.0 5.0 10.2 10.7 5.0
800 5787 5490 5281 5310 4909 15.2 10.6 7.0 7.6 7.0
700 5851 5281 5310 4975 15.0 5.8 6.3 5.8

Within-
Aisle

920 5071 4386 4574 4766 4161 17.9 5.1 9.0 12.7 5.1
800 5071 4509 4574 4766 4169 17.8 7.6 8.9 12.5 7.6
700 5084 4312 4574 4766 4220 17.0 2.1 7.8 11.5 2.1

Across-
Aisle

920 5639 4864 5281 4912 4552 19.3 6.4 13.8 7.3 6.4
800 5639 5191 5281 4912 4607 18.3 11.3 12.8 6.2 6.2
700 5659 5281 4912 4721 16.6 10.6 3.9 3.9

16

6 Conclusion

This study presents an efficient, robust framework for the time-constrained order
batching problem and finds solutions using exact solution approaches. The time-based
order batching typically develops solutions that meet both capacity and time constraints,
but are very costly. Thus, we develop a model which jointly selects an operating policy
and defines batches. We adapt branch-and-price methods to identify exact solution.

Time constrained order picking a characteristic of many picking operations. Our
approach selects the best policy and associated batching decisions. We believe that the
proposed approach can improve productivity in order batching situation through
obtaining robustness by policy selection.

We implemented a branch-and-price method to determine the best policies and
associated set of batches. To construct an initial solution, we extended the order batching
version of the Clarke and Wright algorithm (De Koster et al. 1999). The results showed
the operational improvement over a single policy-based approach. However,
computational performance remains an outstanding issue.

A warehouse management system (WMS) and the experiences of warehouse
managers contribute to developing the best policies. WMS can be used to track the
performances of order pickers, picking vehicles, and the deployment of forklifts, totes,
mobile devices and carts, thereby analyzing their performance parameters. By analyzing
these histories, warehouse managers can better include more accurate information in for
the parameters used on our proposed model.

Acknowledgements

This Colloquium is a direct result of the work of many individuals associated with this
and prior Colloquia. This work was supported by Pusan National University Research
Grant, 2014.

References

[1] Berger, R.T., Coullard, C.R., and Daskin, M.S., 2007. Location-routing problems with

distance constraints. Transporation Science, 41 (1), 29-43.

[2] Clarke, G. and Wright, J.W., 1964. Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12, 568-581.

[3] De Koster, R., 2003. Distribution strategies for online retailers. Engineering Management,
IEEE Transactions on, 50 (4), 448-457.

[4] De Koster, R., Van Der Poort, E.S., and Wolters, M., 1999. Efficient orderbatching methods
in warehouses. International Journal of Production Research, 37 (7), 1479-1504.

17

[5] Frazelle, E., 2002. World-class Warehousing and Material Handling. New York. McGraw-
Hill.

[6] Gademann, N. and Van De Velde, S., 2005. Order batching to minimize total travel time in a
parallel-aisle warehouse. IIE Transactions, 37 (1), 63-75.

[7] Gong, Y. and De Koster, R., 2008. A polling-based dynamic order picking system for online
retailers. IIE Transactions, 40 (11), 1070-1082.

[8] Gu, J., Goetschalckx, M., and Mcginnis, L.F., 2007. Research on warehouse operation: a
comprehensive review. European Journal of Operational Research, 177 (1), 1-21.

[9] Hong, S., Johnson, A.L., and Peters, B.A., 2012. Batch picking in narrow-aisle order picking
systems with consideration for picker blocking. European Journal of Operational
Research, 221 (3), 557-570.

[10] Hsu, C.M., Chen, K.Y., and Chen, M.C., 2005. Batching orders in warehouses by
minimizing travel distance with genetic algorithms. Computers in Industry, 56 (2), 169-
178.

[11] Le-Duc, T., 2005. Design and control of efficient order picking processes. Ph.D. dissertation.
Erasmus University.

[12] Maloney, D., 2007. Express lane [online].
http://www.dcvelocity.com/articles/20070801verticalfocus/ [Accessed Access Date 2011].

[13] Pace, M., 2009. Amazon Prime squeezes already struggling rivals [online].
http://blog.compete.com/2009/01/20/amazon-prime-holiday-shopping/ [Accessed Access
Date 2011].

[14] Platoni, K., 2001. The last mile [online]. http://www.eastbayexpress.com/eastbay/the-last-
mile/Content?oid=1065476 [Accessed Access Date 2011].

[15] Ratliff, H.D. and Rosenthal, A.S., 1983. Order-picking in a rectangular warehouse: a
solvable case of the traveling salesman problem. Operations Research, 31 (3), 507-521.

[16] Tompkins, J.A., Bozer, Y.A., and Tanchoco, J.M.A., 2003. Facilities Planning. 3rd.
Hoboken, NJ. J. Wiley.

[17] Toth, P. and Vigo, D., 2002. The vehicle routing problem. Philadelphia. Society for
Industrial and Applied Mathematics.

