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Abstract 
 

A commitment of delivery time is critical in some online businesses 
(De Koster, 2003). An important challenge to meeting customers’ needs is 
timely order picking which is also relevant to worker safety, item 
freshness, overall operational synchronization, and reduced overtime. We 
analyze an order batch picking situation where a trip is constrained by 
vehicle capacity and must be completed within a specified time. We 
develop a model which partitions orders to batches to minimize the total 
travel time such that each trip meets the orders’ time constraints and 
capacity limit, and also determines a suitable operational policy for each 
batch. Each policy is characterized by routing method, travel speed, 
capacity, and pick time. The proposed batching model can simultaneously 
group orders and can select a best policy among possible policy choices 
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for each batch. To solve the proposed batching procedure, an exact 
algorithm is implemented based on a branch-and-price method. Our 
multiple-policy approach experiences 2.1~7.0% reductions in retrieval 
time compared to a best single-policy approach. The experimental results 
emphasize that when time constraints are enforced in order batching, a 
multiple-policy is preferable to a single-policy approach, because allows 
additional flexibility.  

 
1 Introduction 
 
Today, warehouses play a critical role in supply chains (Tompkins et al. 2003). 
Warehouse operations are becoming more diverse; however, order picking is the most 
labor-intensive, and consumes a significant portion of operational costs (Frazelle 2002). 
Batch picking, where order pickers consolidate multiple orders in a single trip, improves 
picking throughput by reducing the number of trips. Typically, the batch size is 
determined to utilize the full capacity of a picking vehicle, which maximizes throughout.  

We are interested in situations where orders have due dates they must be picked by. 
In this setting picking vehicles may not be fully loaded if the entire batch cannot be 
collected within the specified time limits. Two examples in the literature are an online 
order fulfillment situation that must meet customer promise dates (De Koster (2003) and 
the large online retailers that guarantee a fast delivery schedule to obtain a competitive 
marketing advantage (Gong and De Koster 2008). An example of the latter is 
Amazon.com, who gives its customers a shipping lead time guarantee, based on the 
option, “Amazon Prime”, whereby membership guarantees two-day shipping at no 
additional fee (Pace 2009).  

Food retailers, such as Peapod and Webvan, depend on specialized frozen and 
refrigerated warehousing (Maloney 2007), and the order picking time may be limited by 
safety regulations controlling the operational hours spent by order pickers in refrigerated 
climates (Platoni 2001). Time restricted order picking may also be when managerial rules 
force retrieval cycles to synchronize with the next operation. 

Even though these time-critical operational issues and marketing strategies strongly 
rely on the stability and performance of the warehouse operations, the most expansive 
warehouse operation, order picking, has been not well studied from the perspective of the 
time constraint and its performance. In a preliminary study we grouped orders using 
traditional approaches (De Koster et al. 1999, Gademann and Van de Velde 2005), and 
found that a time-constraint batching approach suffered from a significant loss of 
productivity due to the increased number of trips.  

Fundamentally, a traditional approach tends to assume a unique capacity, a unique 
travel speed, and a unique route method, where the latter represents a mechanism to 
organize a trip for a batch. Under these restrictions and two constraints (i.e., time and 
capacity), it is difficult to find batches that both utilize capacity and meet the time 
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constraints. Thus, typically the addition of a time constraint leads to small and more 
batches, requiring additional labor and higher operational costs.  

We present an efficient and robust batching method to solve the time-constrained-
order batching problem. In practice, warehouse managers face multiple operational policy 
decisions, where a policy is characterized by routing method, travel speed, pick time per 
item, and capacity. Note these parameters do not change independently that for example 
the routing method will affect the travel speed. Typically a manager selects S-shape 
routes for pickers’ convenience. Our study allows such multiple operational policies, 
which we term “multiple-policy”.  

The purpose of our study is to: 1) define a multiple-policy order batching problem 
with capacity and time constraints and develop an appropriate model; and 2) based on the 
formulation, provide an adapted exact branch-and-price solution. The proposed order 
batching with time constraints (OBT) problem incorporates the policy selection problem 
with the order batching problem.  

The remainder of the paper is organized as follows. Section 2 reviews order batching 
models and algorithms. Section 3 defines the order batching situation. We describe the 
characteristics of an operational policy, how to approximate retrieval times, and a 
succinct formulation. Section 4 presents a construction-based order batching algorithm 
and a branch-and-price solution. Section 5 summarizes the experimental results under the 
assumption of multiple-policy order picking. We conclude with our insights and 
suggestions for future research in Section 6. 
 
2 Literature Review 
 
This study is interested in an order batching problem in parallel-aisle warehouses. An 
order batching model is a special case of the vehicle routing problem (VRP) (Gu et al. 
2007). Thus, several models and solutions are available based on VRP formulation. First, 
we summarize a route method, a significant consideration in order batching, since it 
determines route length. Second, we review available batching algorithms. Last, we 
summarize some issues relevant to the time-constrained order batching.  
  
2.1 Routing Methods 
 
The routing method tool used by pickers to construct a trip path over a given batch or 
order consists of an optimal algorithm and heuristic algorithms. Optimal routing of order 
pickers is a special case of the travelling salesman problem (Ratliff and Rosenthal 1983). 
Ratliff and Rosenthal (1983) present a polynomial timed dynamic model to solve the 
order picking problem in a parallel- aisle warehouse. However, due to route complexity, 
heuristics routing is often preferred for practical purposes; Hall (1993) concludes that S-
shape and Largest gap strategies are reasonable.  
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2.2 Order Batching Algorithms 
 
The extensive literature on batching algorithms for parallel-aisle picking systems can be 
categorized as: 1) optimal approach; 2) meta-heuristic; 3) seed heuristic; and 4) saving 
heuristic. An optimal approach for order batching is to solve the batching and routing 
problem exactly through a mixed integer programming model (Gademann and Van de 
Velde 2005). The authors extend Gademann et al. (2001) by developing a branch-and-
price formulation for the sort-while-pick order picking strategy. They evaluate a trip 
length using an optimal routing method, and point out that the optimal route is 
impractical due to route complexity.    

De Koster et al. (1999) conduct a comparison study of seed and saving algorithms 
and conclude that the best seed algorithms combine three control factors: select the seed 
order as the order that must visit the largest number of aisles; choose the next order to 
minimize the number of additional aisles; and cumulatively update the seed information 
based on orders in the seed. Alternatively, in the same paper the savings algorithm (the 
modified Clarke and Wright method) is developed in which a savings list is updated until 
no savings pair remains. They conclude that the savings algorithm is preferable to the 
seed algorithm. 

Hsu et al. (2005) propose a meta-heuristic approach, a genetic order batching 
algorithm, to minimize the total travel distance. The picking distance is calculated 
through S-shape strategy. Each route is constrained by the capacity of the order picking 
vehicle.  
  
2.3 Issues 
 
In reviewing the extant literature, we find that only distance has been considered as a 
measure of a solution quality. The distance-based approach itself can be extended to a 
time-based batching model. If the order picker travels at a constant speed and the 
retrieval time is constant regardless of batching, then a distance-based objective gives the 
same solution as a time-based objective. However, if the time-based batching formulation 
is further constrained to enforce each order is retrieved within in a limited time, the 
required travel distance will increase.  
 
3 Order Batching Model with Time-Constraints 
 
This section presents an order picking situation where a time constraint is enforced and 
multiple-policy is allowed.  
  
3.1 Problem Definition 
 
We consider a parallel-aisle warehouse where pickers ready at the loading/unload station 
and circumnavigate parallel aisles to retrieve items. At a pick location, pickers place the 
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items needed in one vehicle and travel to the next pick location. This is repeated until 
their pick lists are complete, and then return to the station.  The order size is relatively 
small compared to the cart capacity; thus, batch picking is adopted to improve order 
picking throughput by combining many orders in one trip.  A set of orders is available at 
a given time, and pickers must complete each trip within the time length specified. We 
assume that the number of pickers at a loading station is greater than the number of 
batches read for picking at any point in time. The pickers who do not participate in 
picking operation can be assigned to other operations such as sorting or packing. We 
assume the aisle width is designed to be wide enough that congestion is not a concern.     

An operational policy specifies a routing method and a batch size. This study 
considers three routing methods: optimal routing method, S-shape routing method, and 
traversal routing method. Note a traversal routing method is distinguished from an S-
shape routing method in that traversal routing does not allow a U-turn in an aisle. 
Dependent on routing methods, travel speed can vary. For example, optimal routing can 
decrease a travel speed because a picker requires additional care to follow the specified 
route. Batch size can vary with different pick time. If a picker is more careful loading the 
picking vehicle additional capacity can be obtained.  

 

 
Figure 1: A narrow-aisle system and a routing example (Gademann and Van de Velde 

2005). 
  
3.2 Estimating Retrieval Time 
 
Previously, Tompkins et al. (2003) described the time components of order picking 
operations, and Gademann and Van de Velde (2005) described the time components of 
batch picking. We integrate their work and calculate the retrieval time for operation 
policy v having four components: operation policy, route, item, and distance, according to 
dependency: 
 

• Policy setup time (OTv, operation policy set time): e.g. training time 
• Route setup/finishing time (RTv, loading/loading time per trip): e.g. pick list pick-

up time, unload time(one-time unload) 
• Pick dependent time (PTv, pick time per time): e.g. pick time, search time, 
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acceleration/deceleration time, unloading time (item by item) 
• Travel distance dependent time (WTv, walk time per pick face): e.g. travel 

distance, acceleration/deceleration time (# of travel aisles) 
     
 

We assume that the components are deterministic and linearly dependent on 
operation policy, the number of routes, the number of picked items, and travel length.  
Next, we develop a linear equation to estimate the retrieval time for policy v:  

 

    
3.3 Mathematical Model 
 
We formulate a batching model as a set partitioning problem to account for the potential 
of multiple-policies. Initially, we assume that Sv possible batches are available for each 
policy v.  For batch s using policy v, the retrieval time is dvs. Batch s of policy v contains 
multiple orders, which we express with an incidence vector (aovs). Some operation policy 
may require an initial setup cost (OTv). This time does not impact the retrieval time of a 
batch, but it does increase the overall retrieval time of orders. For example, if a policy 
uses a different picking vehicle, time must be allotted for the picker to set up the vehicle. 
  
Indices and Parameters 
V =  the set of all possible policies 

v =  index regarding policies 

Sv =  the set of all possible batches in policy v 

s =  index regarding batches 

O =  the set of all possible orders 

o =  index regarding batches 

OTv
 

=  the setup time for policy v 

aovs
 

=  the incidence column vector for batch s containing order o of policy v  

dvs
 

=  the retrieval time to pick all items of orders in batch s via policy v 

The retrieval time relevant to policy v =  
OTv 
+ (RTv + PTv * the number of picked items + WTv * the number of pick faces) // route 1 
+ (RTv + PTv * the number of picked items + WTv * the number of pick faces) // route 2 
…  
+ (RTv + PTv * the number of picked items + WTv * the number of pick faces) // route n 
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Decision Variables 

vZ  =  

⎩
⎨
⎧

otherwise   0  
selected is policy  if    1  v

 

svY  =  

⎩
⎨
⎧

otherwise   0  
selected is policy  of  batch  if    1  vs

 

 
Formulation 
 
(OBT) Min   ∑∑∑

∈∈ ∈

+
Vv

vv
Vv Ss

vsvs ZOT Yd
v

  (1)  

s.t    ,vsv YZ ≥  V, v,S s v ∈∀∈∀  (2) 

  ,1=∑∑
∈ ∈Vv Ss

vsovs
v

 Ya  O, o∈∀  (3) 

 { },1,0∈vZ  V, v∈∀  (4) 

  { },1,0∈vsY  V, v,S s v ∈∀∈∀  (5) 

The objective function (1) minimizes the total travel time. Constraints (2) ensures 
if a policy v is used for a batch s, then the indicator variable, zv, is set to one to indicate 
the setup for that policy is required. Constraints (3) ensure that each order is picked 
exactly one time. Constraints (4) and (5) require that the decision variables take binary 
values. 
The OBT is a form of the Location-Routing problem (LRP) with multi- constraints (see 
Berger et al. (2007)). Although LRP selects facility locations and organizes their delivery 
routes, OBT selects operation policies and develops batches.   
 
4 Branch-and-Price Algorithm  
 
We apply a branch-and-price algorithm to optimally solve the OBT formulation. The 
branch-and-price algorithm is a well-known exact method to solve VRP problems (Toth 
and Vigo 2002, Berger et al. 2007). We build a construction algorithm, a master problem 
solution, sub problem solution, and branching strategies. The prior work by Gademann 
and Van de Velde (2005) and Berger et al. (2007) cannot be applied directly to our 
formulation. Gademann and Van de Velde do not consider multiple policies. The 
multiple-policy approach impacts the master problem algorithm and the branch-and-
pricing strategy. In addition, our sub problem considers both sort-while-pick and pick-
then-sort strategies, where the item-based quantity constraint of the pick-then-sort 
strategy requires a new algorithm for the sub problem. Although our formulation shares a 
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similar structure to the location-routing approach (Berger et al. 2007), the sub-problems 
in our formulation has a unique structure which has not appeared in the VRP literature.    
  
4.1 Construction Algorithm 
 
Generating an initial feasible solution is critical to the performance of a branch-and-price 
algorithm. The initial feasible solution defines the first upper bound, which if tight, 
decreases unnecessary exploration of the branch and bound tree. Typically heuristic 
algorithms are used to build initial solutions.     

We propose a modified Clarke and Wright algorithm (CW) (Clarke and Wright 
(1964), De Koster et al. (1999)). Our CW algorithms is an adaptation of CW(i) and 
includes logic to deal with both policy selection and batching as follows: 

   

 
  

We also develop a similar extension for CW(ii). 

CW1: extension of CW(i) by De Koster et al. (1999) 
Step 1: calculate the saves svij for all possible order pairs i,j, given the 

capacity and time limit of the policy v 
Step 2: sort the savings in decreasing sequence 
Step 3: select the pair with the highest savings. In the case of a tie, select a 

random pair 
Step 4. Three cases can happen: 

• Neither of the orders has been included in an existing route and the 
remaining capacity of the vehicle is sufficient for both orders: 
include both orders in a new route. 

• Exactly one order has been included in an existing route of a policy. 
If the other order fits in this route, add it to the route; if not, proceed 
with step 5 

• Both orders have been included in an existing route: proceed with 
step 5  

Step 5: select the next order combination from the list and repeat step 4 
until all orders have been included in a route 
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4.2 Master Problem 
 
The master problem optimally assigns of orders to batches. This can be formulated as a 
set partition problem. 
 

(MP) Min   ∑∑∑
∈∈ ∈

+
Vv

vv
Vv Ss

vsvs ZOT Yd
v

   

s.t    ,0≥−∑
∈ vSs

vsovsv  YaZ  O oV, v ∈∀∈∀  (6) 

  ,1≥∑∑
∈ ∈Vv Ss

vsovs
v

 Ya  O o∈∀  (7) 

 ,10 ≤≤ vZ  V, v∈∀  (8) 

  ,10 ≤≤ vsY  V, v,S s v ∈∀∈∀  (9) 

The OPT formulation is a set partition problem with location constraints, thus an Integer 
Program (IP). To solve the OPT problem, a linear programming relaxation of the problem 
is used. Equations (8) and (9) define vZ and vsY  as continuous variables.  Further, 
constraint (3) relaxes equation (7) from requiring strict equality to a greater than or equal 
condition. This problem is a set covering problem. The LP relaxation provides solution 
that is far from feasible in the OBT formulation. Thus, we modify the constraints (6) is a 
rank-1 Chvatal cuts (Berger et al. 2007) developed from equations (2).     
  
4.3 Sub Problem 
 
There are two kinds of dual variables from the master problem associated with 
constraints (6) and (7):   for orders o , oπ , and for policies v, ovµ . For each sub problem, 
new columns are generated if the dual variables from the master problem indicated a 

CW2: extension of CW(ii) by De Koster et al. (1999) 
Step 1: calculate the saves svij for all possible order pairs i,j, given the 

capacity and time limit of policy v 
Step 2: sort the savings in decreasing sequence 
Step 3: select the pair with the highest savings; in the case of a tie, select a 

random pair 
Step 4. merge the two orders i.e., ‘clusters’ into a new cluster, if it is 

feasible for the capacity and the time; if not, choose the next 
combination on the list  

Step 5: if all order combinations have not been included in a route, proceed 
with step 1; in the calculation, all clusters are considered as orders; 
otherwise: go to end 
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negative reduced cost. The dual variables update the reduced cost of a batch s associated 
with policy v. We define the reduced cost as: 

( )∑
∈

−−=
Oo

ovoovsvsvs add µπ,  (10) 

Indices and Parameters 
vQ  =  the maximum capacity for one route when policy v is used 

vT  =  the maximum time length for one route when policy v is used 

R  =  the set of all possible routes 

ijvc  =  the travel cost from item i to item j by policy v 

vRT  =  the route setup time for policy v 

vPT  =  the unit picking time of policy v 

vWT  =  the travel speed of policy v 

oq  =  the number of items in order o 

 
Decision Variables 

ijx  =  

⎩
⎨
⎧

otherwise   0  
  to item from arcan  has  route a if    1  ji

 

oy  =  

⎩
⎨
⎧

otherwise   0  
oorder  contains  route a if    1  
 

   

The reduced cost is reflected in the objective function of the sub problem. The 
three factors appearing in the objective function are: 1) setup time, 2) picking dependent 
time, and 3) travel distance dependent time. Without considering dual variables, the 
objective function can be expressed as: 

 

∑∑∑
∈ ∈∈

++
Ni Nj

ijijvv
Oo

oovv xcWTyqPTRT  
(11) 

 
Based on the dual variables, we derive an updated objective function. As described 

above, the dual variables are indexed as orders and picking modes. For simplicity, we 
derive the objective function as a value dependent on order quantity: 

 
( )

( )( ) ∑∑∑

∑∑∑∑

∈ ∈∈

∈∈ ∈∈

+−−+=

−−++

Ni Nj
ijijvv

Oo
oovoovsovv

Oo
oovoovs

Ni Nj
ijijvv

Oo
oovv

xcWTyaqPTRT

yaxcWTyqPTRT

µπ

µπ

                          
 

(12) 

 
Thus, the sub problem of policy v generates a batch (or batches) to minimize the 

equation (13). 
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(SP) Min  ( )( ) ∑∑∑

∈ ∈∈

+−−+
Ni Nj

ijijvv
Oo

oovoovsovv xcWTyaqPTRT µπ  (13) 

 
We modify the branch-and-bound approach in Gademann et al. (2005) and adapt 

an active node search. Each level matches an order. The level contains two branches: 
including the current level and excluding the current node. To improve search 
performance, we consider only negative weighted orders. We sort the result in a 
decreasing order. Because we know the remaining capacities and all worst possible 
negative weight, we can forecast the most negative value at a node. Based on the current 
nth objective value, if the minimal forecast objective value is greater than nth objective 
value, we do not need to continue the branch step. We use the following lower bound 
forecasting logic:  

 
1) Define the remain capacities for time and quantity 
2) Find (new dual-picking times)/order quantity for all orders 
3) Sort the values in increasing order 
4) Compute minimal (maximal possible quantity) 

a. When the remaining quantity is less than the candidate order  
quantity, consider the possible portion.  

 
4.4 Branching Rules 
 
Our problem contains two branching stages: 1) we determine which policies are 
acceptable for the optimal solution, and 2) we fix the order pairs for each policy. For the 
strategies decision we follow Berger et al. (2007). To branch on an order pair, we adopt 
Gademann et al. (2005).      

To branching on a policy we consider fractional values for Zp and we apply the 0-1 
branching. When Zp > 0.001, we set Zp to 1. For Zp ≤ 0.001, we set Zp to 0 and set all 
routes Yop regarding Zp to 0.  

For Yop, we design two branching strategies: 1) we apply the most common 
approach by Gademann et al. (2005) to consider the branch on the most fractional node 
and correct the more factional pair into an integer value, 0 or 1; and 2) we also consider 
the branch on the smallest order size, because a smaller order has a larger number of 
batch combinations than a larger order.     
  
4.5 Overall Iteration 
 
The branch-and-price procedure requires a step-by-step approach. First, we run the 
construction algorithm to obtain an upper bound (UP). Second, we execute a column 
generation step. Then, we get a lower bound (LP). If |UP-LP|= 0, we stop. The current 
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solution becomes an optimal solution. If not, we conduct a branch-and-price step utilizing 
branching rules and column generation steps.     
 
5 Experimental Results 
 
We report the computational results and discuss insights from the computational studies. 
We first test the computational performance of the proposed heuristic and branch-and-
price algorithms with two policies. Our experiment then focuses on a picking situation 
where four extreme policies are prepared. Last, we discuss a situation where a limited 
number of policies are possible.  

We implement the proposed system using the C language. The master problem is 
implemented using the ILOG CPLEX Callable Library C API 11.0.4.  To test the 
computational performance, the executable files are run on a Window NT-based server 
system with Windows Vista (Xeon 2.66 Ghz CPU, 12 GB memory). We use a modified 
order picking profile as in Gademann et al. (2005) and Le-Duc (2005).     
  
5.1 Computational Performance 
 
We use the following profiles: 
 

• Warehouse layout: 6 aisles (height=30, width=5) 
• Operation policy 1. OT1=0, RT1=0, PT1=8, WT1=1, Q1= 8 or 15 
• Operation policy 2. OT2=0, RT2=0, PT2=4, WT2=1, Q2= 6 or 12 
• Time constraint: 350 or 400 
• Storage strategy: random or  class (within-aisle class based strategy, 2 aisles:4 

aisles= 70:30 ) 
• Routing: optimal method 
• The proportion of orders (o) to items (i): 20:24, 20:36, 15:60, and 20:72 

 
The test sets are generated randomly. For each order set, we generate 10 problem 

runs per each instance: 
 

• ub:  objective value by a construction algorithm 
• opt: objective value by a branch-and-price algorithm 
• diff %: (ub-opt)/ub*100 
• note: the number of branched nodes 
• cpu: run time in seconds 

 
Construction Algorithm 

Table 1 compares construction algorithms in terms of the quality of the objective 
value. CW2 dominates CW1 and first-come first-served (FCFS) batching algorithms. The 
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CW2 algorithm accounts for the cost savings at each iteration, therefore the candidates at 
the top of the list are more likely to improve the solution. The computational time is 
negligible because of the problem size.       
 

Table 1: Computational results of conduction algorithms. 
(Q1,Q2) 

 
Instances Construction algorithms (ub) 

CW2 CW1 FCFS 
(8,6) 20:24 class storage 538.8 660.4 940.0 
  20:24 random storage 595.4 742.6 1229.6 
  20:36 class storage 1660.0 1749.8 2483.8 
  20:36 random storage 1957.0 2095.8 3167.0 
  15:60 class storage 2305.8 2309.8 2810.2 
  15:60 random storage 2950.6 2976.0 3613.2 
  20:72 class storage 2305.8 2309.8 2810.2 
  20:72 random storage 2950.6 2976.0 3613.2 
(15,12) 20:24 class storage 541.8 749.2 1031.2 
  20:24 random storage 607.6 729.0 1179.6 
  20:36 class storage 919.8 1050.2 1553.8 
 20:36 random storage 993.0 1242.0 1892.0 
  15:60 class storage 1650.8 1720.6 2148.8 
 15:60 random storage 1939.2 2013.2 2760.0 
  20:72 class storage 1951.2 2038.0 2822.8 
  20:72 random storage 2217.2 2323.6 3582.2 

 
Branch-and-Price Algorithm 

Table 2 summarizes the computational results by the branch-and-price algorithm. 
We compare two branching rules: 1) a most fractional node first rule (Fraction first), and 
2) a smallest order size node first rule (Smallest order). Commonly, the branch-and-price 
algorithm for the location-routing problem works well branching on the most fractional 
node (Berger et al. 2007), whereas our results exhibit different patterns. When the order 
size is small, branching on the most fractional node performs well. However, when the 
order size is large and the items are stored randomly, branch on the smallest order works 
better. Pairs with small order sizes have a better chance to lead to cost efficient batches.   
  



14 

 
Table 2: Computational results of the branch-and-price algorithm. 

  
(Q1,Q2) 
  

 Instances 
  

B&P rules 
Objective values Fraction first Smallest order 

ub opt diff % nodes cpu nodes cpu  (8,6) 20:24 class storage 538.8 492.0 9.51 262.1 53.7 565.4 78.9    20:24 random storage 595.4 554.6 7.36 173.9 35.2 400.2 70.1    20:36 class storage 1660.0 1560.0 6.41 4347.3 717.6 5445.1 655.2    20:36 random storage 1957.0 1898.6 3.08 2337.2 367.1 2828.6 472.1    15:60 class storage 2305.8 2228.4 3.47 48.0 7.5 57.8 7.3    15:60 random storage 2950.6 2871.4 2.76 151.6 21.0 61.0 10.1    20:72 class storage 2305.8 2228.4 3.47 48.0 7.5 57.8 7.3    20:72 random storage 2950.6 2871.4 2.76 151.6 21.0 61.0 10.1  (15,12) 20:24 class storage 541.8 522.0 3.8 264.5 59.4 494.1 102.5    20:24 random storage 607.6 563.0 7.9 99.5 33.5 376.6 68.6    20:36 class storage 919.8 818.0 12.4 733.4 153.1 2484.7 438.3  

 
20:36 random storage 993.0 922.8 7.6 4291.6 765.0 2402.9 411.2    15:60 class storage 1650.8 1537.2 7.4 905.4 204.4 1439.9 330.1  

 
15:60 random storage 1939.2 1835.6 5.6 223.8 38.2 330.6 52.2    20:72 class storage 1951.2 1812.8 7.6 19127.0 3755.5 31925.4 5899.5    20:72 random storage 2217.2 2052.8 8.0 9953.3 2764.2 8095.8 1748.2  

   
5.2 Single-Policy Versus Multiple-Policy 
 
An order picker can take different route methods according to the batch. On the 
operational level, we can design a multiple-policy operation situation. We provide the 
following rationales: 
 

1) If an order picker takes more time, he/she can load more items 
2) When a simpler routing method is employed under the same routing length, a 

travel time can be shortened 
3) Even though an optimal routing method is inconvenient, sometimes the reduction 

in distance outweighs the additional cognitive processing time.  
 

We repeat the previous experiment with the same order picking profile. First, we 
consider various storage methods: random, within-aisle class, and across aisle class. 
Second, we define four operation modes summarized in Table 3. The four policies are 
named normal policy, heavy-load policy, fast-pick policy, and a short-path policy. 
 

Table 1: Possible operation policies (V). 
Type PTv WTv Qv Routing method 

Normal (A) 10 2.7 10 S-shape 
Heavy load (B) 10 3.3 15 S-shape 
Fast (C) 10 2.25 10 Traversal 
Short (D) 10 3 10 Optimal 

 
• Storage strategy: random, within-aisle class based strategy (The products in the 
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first 2 aisle account for 70% of the demand whereas the remaining 4 aisles contain 

product making up only 30% of the demand), and across-aisle class-based 

strategy (The products in the 10 pickfaces closest to the bottom cross aisle in each 

aisle account for 70% of the demand whereas the remaining 20 pick faces contain 

product making up only 30% of the demand) 

• diff %: (obj of a single policy –opj by multiple-policy)/obj of a single policy *100 

 
Table 4 summarizes the results. Our approach generates 2.1~7.0% total retrieval time 
reduction according to the time length compared to the shortest single-policy. 
 

Table 2: Comparison of single-policy and multiple-policy with the branch-and-price 
algorithm. 

Order 
type 

Storage 
policy Tv 

Single policy OBT (OPT) 

 
Diff (%) 

A B C D Obj A B C D Min 
12:29 

 
 

Random 920 1553 1508 1415 1492 1373 11.6 8.9 3.0 8.0 3.0 
800 1553 1627 1415 1492 1373 11.6 15.6 3.0 8.0 3.0 
700 1555 1743 1415 1492 1373 11.7 21.2 3.0 8.0 3.0 

Within-
Aisle 

920 1405 1380 1278 1346 1242 11.6 10.0 2.8 7.7 2.8 
800 1405 1424 1278 1346 1242 11.6 12.8 2.8 7.7 2.8 
700 1405 1472 1278 1346 1242 11.6 15.6 2.8 7.7 2.8 

Across-
Aisle 

920 1509 1463 1415 1386 1321 12.5 9.7 6.7 4.7 4.7 
800 1509 1532 1415 1386 1321 12.5 13.8 6.7 4.7 4.7 
700 1509 1676 1415 1386 1321 12.5 21.2 6.7 4.7 4.7 

15:60 
 

Random 
 

920 3515 3092 3152 3242 2927 16.7 5.3 7.1 9.7 5.3 
800 3515 3370 3152 3242 2949 16.1 12.5 6.4 9.1 6.4 
700 3580 3403 3152 3243 2991 16.5 12.1 5.1 7.8 5.1 

Within-
Aisle 

920 3102 2716 2756 2923 2616 15.7 3.7 5.1 10.5 3.7 
800 3102 2866 2756 2923 2617 15.6 8.7 5.0 10.5 5.0 
700 3103 2923 2756 2923 2635 15.1 9.9 4.4 9.9 4.4 

Across-
Aisle 

920 3425 3013 3152 3009 2838 17.2 5.8 10.0 5.7 5.7 
800 3425 3237 3152 3009 2844 17.0 12.2 9.8 5.5 5.5 
700 3434 3733 3152 3009 2896 15.7 22.4 8.1 3.8 3.8 

15:90 
 

Random 
 

920 5787 4993 5281 5310 4744 18.0 5.0 10.2 10.7 5.0 
800 5787 5490 5281 5310 4909 15.2 10.6 7.0 7.6 7.0 
700 5851   5281 5310 4975 15.0  5.8 6.3 5.8 

Within-
Aisle 

 

920 5071 4386 4574 4766 4161 17.9 5.1 9.0 12.7 5.1 
800 5071 4509 4574 4766 4169 17.8 7.6 8.9 12.5 7.6 
700 5084 4312 4574 4766 4220 17.0 2.1 7.8 11.5 2.1 

Across-
Aisle 

920 5639 4864 5281 4912 4552 19.3 6.4 13.8 7.3 6.4 
800 5639 5191 5281 4912 4607 18.3 11.3 12.8 6.2 6.2 
700 5659   5281 4912 4721 16.6  10.6 3.9 3.9 
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6 Conclusion 
 
This study presents an efficient, robust framework for the time-constrained order 
batching problem and finds solutions using exact solution approaches. The time-based 
order batching typically develops solutions that meet both capacity and time constraints, 
but are very costly. Thus, we develop a model which jointly selects an operating policy 
and defines batches. We adapt branch-and-price methods to identify exact solution.   

Time constrained order picking a characteristic of many picking operations. Our 
approach selects the best policy and associated batching decisions. We believe that the 
proposed approach can improve productivity in order batching situation through 
obtaining robustness by policy selection.   

We implemented a branch-and-price method to determine the best policies and 
associated set of batches. To construct an initial solution, we extended the order batching 
version of the Clarke and Wright algorithm (De Koster et al. 1999). The results showed 
the operational improvement over a single policy-based approach. However, 
computational performance remains an outstanding issue. 

A warehouse management system (WMS) and the experiences of warehouse 
managers contribute to developing the best policies. WMS can be used to track the 
performances of order pickers, picking vehicles, and the deployment of forklifts, totes, 
mobile devices and carts, thereby analyzing their performance parameters. By analyzing 
these histories, warehouse managers can better include more accurate information in for 
the parameters used on our proposed model.  
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